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Review of last lecture and Outline

° Motivation for Dense Linear Algebra (Lectures 10-11)
• Ax=b: Computational Electromagnetics

• Ax = λλλλx: Quantum Chemistry

° Review Gaussian Elimination (GE) for solving Ax=b

° Optimizing GE for caches on sequential machines
• using matrix-matrix multiplication (BLAS)

• Other BLAS3 important too

° LAPACK library overview and performance

° Data layouts on parallel machines

° Review GE and Data layouts

° Parallel matrix-matrix multiplication

° Parallel Gaussian Elimination

° ScaLAPACK library overview

° Open Problems
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BLAS2 version of Gaussian Elimination with Partial Pivoting (GEPP)

for i = 1 to n-1
     find and record k where |A(k,i)| = max{i <= j <= n} |A(j,i)|
            … i.e. largest entry in rest of column i
     if |A(k,i)| = 0
          exit with a warning that A is singular, or nearly so
     elseif  k != i
          swap rows i and k of A
     end if       
     A(i+1:n,i) = A(i+1:n,i) / A(i,i)        
                     … each quotient lies in [-1,1]
                     … BLAS 1
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) - A(i+1:n , i) * A(i , i+1:n)
                     … BLAS 2, most work in this line
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BLAS 3 (Blocked) GEPP, using Delayed Updates

for   ib = 1 to n-1 step b     … Process matrix b columns at a time
     end = ib + b-1                … Point to end of block of b columns 
     apply BLAS2 version of GEPP to  get A(ib:n , ib:end) = P’ * L’ * U’
     … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I
     A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n)         … update next b rows of U
     A(end+1:n , end+1:n ) = A(end+1:n , end+1:n )
                  - A(end+1:n , ib:end) * A(ib:end , end+1:n)    
                                       … apply delayed updates with single matrix-multiply
                                       … with inner dimension b

BLAS 3
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Parallelizing Gaussian Elimination

° Recall parallelization steps from Lecture 3
• Decomposition: identify enough parallel work, but not too much

• Assignment:  load balance work among threads

• Orchestrate: communication and synchronization

• Mapping: which processors execute which threads

° Decomposition
• In BLAS 2 algorithm nearly each flop in inner loop can be done in

parallel, so with n2 processors, need 3n parallel steps

• This is too fine-grained, prefer calls to local matmuls instead

• Need to discuss parallel matrix multiplication

° Assignment
• Which processors are responsible for which submatrices?

for i = 1 to n-1
     A(i+1:n,i) = A(i+1:n,i) / A(i,i)         … BLAS 1 (scale a vector)
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  … BLAS 2 (rank-1 update)
              - A(i+1:n , i) * A(i , i+1:n)
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Different Data Layouts for Parallel GE (on 4 procs)

 The winner!

Bad load balance:
P0 idle after first
n/4 steps

Load balanced, but can’t easily
use BLAS2 or BLAS3

Can trade load balance
and BLAS2/3 
performance by 
choosing b, but
factorization of block
column is a bottleneck

Complicated addressing
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How to proceed:

° Consider basic parallel matrix multiplication
algorithms on simple layouts

• Performance modeling to choose best one

- Time (message) = latency + #words * time-per-word

-                             = αααα + n*ββββ

° Briefly discuss block-cyclic layout

° PBLAS = Parallel BLAS
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Parallel Matrix Multiply

° Computing C=C+A*B

° Using basic algorithm: 2*n3 Flops

° Variables are:
• Data layout

• Topology of machine

• Scheduling communication

° Use of performance models for algorithm design
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1D Layout

° Assume matrices are n x n and n is divisible by p

° A(i) refers to the n by n/p block column that
processor i owns (similiarly for B(i) and C(i))

° B(i,j) is the n/p by n/p sublock of B(i)
• in rows j*n/p through (j+1)*n/p

° Algorithm uses the formula
C(i) = C(i) + A*B(i) = C(i) + ΣΣΣΣ A(j)*B(j,i)

p0 p1 p2 p3 p5p4 p6 p7

j
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Matrix Multiply: 1D Layout on Bus or Ring

° Algorithm uses the formula
C(i) = C(i) + A*B(i) = C(i) + ΣΣΣΣ  A(j)*B(j,i)

° First consider a bus-connected machine without
broadcast:  only one pair of processors can
communicate at a time (ethernet)

° Second consider a machine with processors on a
ring: all processors may communicate with nearest
neighbors simultaneously

j
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Naïve MatMul for 1D layout on Bus without Broadcast

Naïve algorithm:

     C(myproc) = C(myproc) + A(myproc)*B(myproc,myproc)

     for i = 0 to p-1

        for j = 0 to p-1 except i

            if (myproc == i) send A(i) to processor j

            if (myproc == j)

                 receive A(i) from processor i

                 C(myproc) = C(myproc) + A(i)*B(i,myproc)

            barrier

Cost of inner loop:

       computation: 2*n*(n/p)2 = 2*n3/p2

       communication: αααα + ββββ*n2  /p
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Naïve MatMul (continued)

Cost of inner loop:

       computation: 2*n*(n/p)2 = 2*n3/p2

       communication: αααα + ββββ*n2 /p        … approximately

Only 1 pair of processors (i and j) are active on any iteration,

  an of those, only i is doing computation

                   => the algorithm is almost entirely serial

Running time: (p*(p-1) + 1)*computation +  p*(p-1)*communication

                        ~= 2*n3 + p2*αααα + p*n2*ββββ

  this is worse than the serial time and grows with p
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Better Matmul for 1D layout on a Processor Ring

° Proc i can communicate with Proc(i-1) and Proc(i+1) simultaneously for all i

Copy A(myproc) into Tmp
C(myproc) = C(myproc) + T*B(myproc , myproc)
for j = 1 to p-1
      Send Tmp to processor myproc+1 mod p
      Receive Tmp from processor myproc-1 mod p
      C(myproc) = C(myproc) + Tmp*B( myproc-j mod p , myproc)

° Same idea as for gravity in simple sharks and fish algorithm
° Time  of inner loop = 2*(αααα + ββββ*n2/p) + 2*n*(n/p)2

° Total Time  = 2*n* (n/p)2  +  (p-1) * Time of inner loop
                     ~ 2*n3/p  + 2*p*αααα + 2*ββββ*n2

° Optimal for 1D layout on Ring or Bus, even with with Broadcast:
         Perfect speedup for arithmetic
         A(myproc) must move to each other processor, costs at least
               (p-1)*cost of sending n*(n/p) words     
° Parallel Efficiency = 2*n3 / (p * Total Time) = 1/(1 + αααα * p2/(2*n3) + ββββ * p/(2*n) )
                                  = 1/ (1 + O(p/n))

 Grows to 1 as n/p increases (or αααα and ββββ shrink)
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MatMul with 2D Layout

° Consider processors in 2D grid (physical or logical)

° Processors can communicate with 4 nearest
neighbors

• Broadcast along rows and columns

 p(0,0)        p(0,1)       p(0,2)

 p(1,0)        p(1,1)       p(1,2)

 p(2,0)        p(2,1)       p(2,2)
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Cannon’s Algorithm

… C(i,j) = C(i,j) + ΣΣΣΣ  A(i,k)*B(k,j)

…  assume s = sqrt(p) is an integer

   forall  i=0 to s-1              …  “skew” A

         left-circular-shift row i of A by i

         … so that A(i,j) overwritten by A(i,(j+i)mod s)

   forall  i=0 to s-1               …  “skew” B

         up-circular-shift B column i of B by i

          … so that B(i,j) overwritten by B((i+j)mod s), j)

   for k=0 to s-1        … sequential

          forall i=0 to s-1 and j=0 to s-1    … all processors in parallel

               C(i,j) = C(i,j) + A(i,j)*B(i,j)

               left-circular-shift each row of A by 1

               up-circular-shift each row of B by 1

k
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Communication in Cannon

C(1,2) = A(1,0) * B(0,2) + A(1,1) * B(1,2) + A(1,2) * B(2,2)
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Cost of Cannon’s Algorithm

  forall  i=0 to s-1              …  recall s = sqrt(p)

         left-circular-shift row i of A by i    … cost = s*(αααα + ββββ*n2/p)

   forall  i=0 to s-1

         up-circular-shift B column i of B by i … cost = s*(αααα + ββββ*n2/p)

   for k=0 to s-1

          forall  i=0 to s-1 and j=0 to s-1

               C(i,j) = C(i,j) + A(i,j)*B(i,j)   … cost = 2*(n/s)3 = 2*n3/p3/2

               left-circular-shift each row of A by 1   … cost = α α α α + ββββ*n2/p

               up-circular-shift each row of B by 1     … cost = αααα + ββββ*n2/p

° Total Time = 2*n3/p +  4* s*αααα + 4*ββββ*n2/s  
° Parallel Efficiency = 2*n3 / (p * Total Time)
                                  = 1/( 1 + αααα * 2*(s/n)3 + ββββ * 2*(s/n) )
                                  = 1/(1 + O(sqrt(p)/n)) 
° Grows to 1 as n/s = n/sqrt(p) = sqrt(data per processor) grows
° Better than 1D layout, which had Efficiency = 1/(1 + O(p/n))
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Drawbacks to Cannon

° Hard to generalize for
• p not a perfect square

• A and B not square

• Dimensions of A, B not perfectly divisible by s=sqrt(p)

• A and B not “aligned” in the way they are stored on processors

• block-cyclic layouts

° Memory hog (extra copies of local matrices)
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SUMMA = Scalable Universal Matrix Multiply Algorithm

° Slightly less efficient, but simpler and easier to
generalize

° Presentation from van de Geijn and Watts
• www.netlib.org/lapack/lawns/lawn96.ps

• Similar ideas appeared many times

° Used in practice in PBLAS = Parallel BLAS
• www.netlib.org/lapack/lawns/lawn100.ps
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SUMMA 

*  =
C(I,J)I

J

A(I,k)

k

k

B(k,J)

°  I, J represent all rows, columns owned by a processor
° k is a single row or column (or a block of b rows or columns)
° C(I,J) = C(I,J) + ΣΣΣΣk A(I,k)*B(k,J)
° Assume a pr by pc processor grid (pr = pc = 4 above)           

For k=0 to n-1     … or n/b-1 where b is the block size 
                            …  = # cols in A(I,k) and # rows in B(k,J) 
     for all I = 1 to pr   … in parallel
           owner of A(I,k) broadcasts it to whole processor row
     for all J = 1 to pc  … in parallel
            owner of B(k,J) broadcasts it to whole processor column
     Receive A(I,k) into Acol
     Receive B(k,J) into Brow
     C( myproc , myproc ) = C( myproc , myproc) + Acol * Brow
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SUMMA performance 

For k=0 to n/b-1
     for all I = 1 to s   …  s = sqrt(p)
           owner of A(I,k) broadcasts it to whole processor row
               … time = log s *( αααα + ββββ * b*n/s), using a tree
     for all J = 1 to  s
            owner of B(k,J) broadcasts it to whole processor column
              … time = log s *( αααα + ββββ * b*n/s), using a tree
     Receive A(I,k) into Acol
     Receive B(k,J) into Brow
     C( myproc , myproc ) = C( myproc , myproc) + Acol * Brow
              … time = 2*(n/s)2*b

° Total time = 2*n3/p   +   αααα * log p * n/b   +   ββββ * log p * n2 /s
° Parallel Efficiency = 1/(1 + αααα * log p * p / (2*b*n2)  + ββββ * log p * s/(2*n) )
° ~Same ββββ term as Cannon, except for log p factor
          log p grows slowly so  this is ok
° Latency (αααα) term can be larger, depending on b
          When b=1, get  αααα * log p * n 
          As b grows to n/s, term shrinks to αααα * log p * s  (log p times Cannon)
° Temporary storage grows like 2*b*n/s
° Can change b to tradeoff latency cost with memory
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PDGEMM =  PBLAS routine
      for matrix multiply

Observations:
    For fixed N, as P increases
       Mflops increases, but
       less than 100% efficiency
    For fixed P, as N increases,
       Mflops (efficiency) rises

DGEMM = BLAS routine
      for matrix multiply

Maximum speed for PDGEMM
     = # Procs * speed of DGEMM

Observations (same as above):
     Efficiency always at least 48%
     For fixed N, as P increases,
         efficiency drops 
     For fixed P, as N increases,
         efficiency increases
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Summary of Parallel Matrix Multiply Algorithms

° 1D Layout
• Bus without broadcast - slower than serial

• Nearest neighbor communication on a ring (or bus with
broadcast): Efficiency = 1/(1 + O(p/n))

° 2D Layout
• Cannon

- Efficiency = 1/(1+O(p1/2 /n))

- Hard to generalize for general p, n, block cyclic, alignment

• SUMMA

- Efficiency = 1/(1 + O(log p * p / (b*n2) + log p * p1/2 /n))

- Very General

- b small => less memory, lower efficiency

- b large => more memory, high efficiency

• Gustavson et al

- Efficiency = 1/(1 + O(p1/3 /n) )  ??
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Review: BLAS 3 (Blocked) GEPP

for   ib = 1 to n-1 step b     … Process matrix b columns at a time
     end = ib + b-1                … Point to end of block of b columns 
     apply BLAS2 version of GEPP to  get A(ib:n , ib:end) = P’ * L’ * U’
     … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I
     A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n)         … update next b rows of U
     A(end+1:n , end+1:n ) = A(end+1:n , end+1:n )
                  - A(end+1:n , ib:end) * A(ib:end , end+1:n)    
                                       … apply delayed updates with single matrix-multiply
                                       … with inner dimension b

BLAS 3
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Review: Row and Column Block Cyclic Layout

processors and matrix blocks
are distributed in a 2d array

pcol-fold parallelism
in any column, and calls to the 
BLAS2 and BLAS3 on matrices of 
size brow-by-bcol

serial bottleneck is eased

need not be symmetric in rows and
columns
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Distributed GE with a 2D Block Cyclic Layout

block size b in the algorithm and the block sizes brow 
and bcol in the layout satisfy b=brow=bcol. 

shaded regions indicate busy processors or 
communication performed.

unnecessary to have a barrier between each 
step of the algorithm, e.g.. step 9, 10, and 11 can be 
pipelined
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Distributed GE with a 2D Block Cyclic Layout
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PDGESV = ScaLAPACK 
       parallel LU routine

Since it can run no faster than its
    inner loop (PDGEMM), we measure:
Efficiency = 
     Speed(PDGESV)/Speed(PDGEMM)

Observations:
     Efficiency well above 50% for large
          enough problems
     For fixed N, as P increases,
         efficiency decreases 
          (just as for PDGEMM)
     For fixed P, as N increases
         efficiency increases
          (just as for PDGEMM)
     From bottom table, cost of solving
          Ax=b about half of matrix multiply
          for large enough matrices.
          From the flop counts we would
          expect it to be (2*n3)/(2/3*n3) = 3
          times faster, but communication
          makes it a little slower.
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Scales well, 
   nearly full machine speed
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Old version,
pre 1998 Gordon Bell Prize

Still have ideas to accelerate
Project Available!

Old Algorithm,
    plan to abandon
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Have good ideas to speedup
Project available!

Hardest of all to parallelize
Have alternative,  and
      would like to compare
Project available!
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Out-of-core means
  matrix lives on disk;
  too big for main mem

Much harder to hide
  latency of disk

QR much easier than LU
  because no pivoting
  needed for QR

Moral: use QR to solve Ax=b

Projects available
  (perhaps very hard…)
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A small software project ...


